设为首页 加入收藏
栏目导航
通知公告

项目百科 当前位置:中国设备管理研究院┃官网 > 项目百科 >

继电保护

时期:2016-01-28 08:50:00 来源:研究中心

一、名称解释
      Protective Relay,Power System Protection
      研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。因在其发展过程中曾主
要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以也称继电保护。基本任务是:当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。
二、基本原理
      继电保护装置必须具有正确区分被保护元件是处于正常运行状态还是发生了故障,是保护区内故障还是区外
故障的功能。保护装置要实现这一功能,需要根据电力系统发生故障前后电气物理量变化的特征为基础来构成。
      电力系统发生故障后,工频电气量变化的主要特征是:
(1) 电流增大。 短路时故障点与电源之间的电气设备和输电线路上的电流将由负荷电流增大至大大超过负
荷电流。
(2) 电压降低。当发生相间短路和接地短路故障时,系统各点的相间电压或相电压值下降,且越靠近短路点
,电压越低。
(3) 电流与电压之间的相位角改变。正常运行时电流与电压间的相位角是负荷的功率因数角,一般约为20°
,三相短路时,电流与电压之间的相位角是由线路的阻抗角决定的,一般为60°~85°,而在保护反方向三相短路时,电流与电压之间的相位角则是180°+(60°~85°)。
(4) 测量阻抗发生变化。测量阻抗即测量点(保护安装处)电压与电流之比值。正常运行时,测量阻抗为负荷
阻抗;金属性短路时,测量阻抗转变为线路阻抗,故障后测量阻抗显著减小,而阻抗角增大。
      不对称短路时,出现相序分量,如两相及单相接地短路时,出现负序电流和负序电压分量;单相接地时,出
现负序和零序电流和电压分量。这些分量在正常运行时是不出现的。
      利用短路故障时电气量的变化,便可构成各种原理的继电保护。
      此外,除了上述反应工频电气量的保护外,还有反应非工频电气量的保护。
三、系统保护
      实现继电保护功能的设备称为继电保护装置。虽然继电保护有多种类型,其装置也各不相同,但都包含着下列
主要的环节:①信号的采集,即测量环节;②信号的分析和处理环节;③判断环节;④作用信号的输出环节。以上所述仅限于组成电力系统的各元件(发电机、变压器、母线、输电线等)的继电保护问题,而各国电力系统的运行实践已经证明,仅仅配置电力系统各元件的继电保护装置,还远不能防止发生全电力系统长期大面积停电的严重事故。为此必须从电力系统的全局和整体出发,研究故障元件被相应继电保护装置动作而切除后,系统将呈现何种工况,系统失去稳定时将出现何种特征,如何尽快恢复系统的正常运行。这些正是系统保护所需研究的内容。系统保护的任务就是当大电力系统正常运行被破坏时,尽可能将其影响范围限制到最小,负荷停电时间减小到最短。
      大电力系统的安全稳定运行,首先必须建立在电力系统的合理结构布局上,这是系统规划设计和运行调度工
作中必须重视的问题。在此基础上,系统保护的合理配置和正确整定,同时配合系统安全自动装置(如解列装置、自动减负荷、切水轮发电机组、快速压汽轮发电机出力、自动重合闸、电气制动等),达到电力系统安全运行的目的。
      鉴于机、炉、电诸部分构成电力生产中不可分割的整体,任一部分的故障均将影响电力生产的安全,特别是
大机组的不断增加和系统规模的迅速扩大,使大电力系统与大机组的相互影响和协调问题成为电能安全生产的重大课题。电力系统继电保护和安全自动装置的配置方案应考虑机、炉设备的承受能力,机、炉设备的设计制造也应充分考虑电力系统安全经济运行的实际需要。
      为了巨型发电机组的安全,不仅应有完善的继电保护装置,还应积极研究和推广故障预测技术,以期实现防
患于未然,进一步提高大机组的安全可靠性。
四、发展历程
      继电保护是随着电力系统的发展而发展起来的。20世纪初随着电力系统的发展,继电器开始广泛应用
于电力系统的保护,这时期是继电保护技术发展的开端。最早的继电保护装置是熔断器。从20世纪50年代到90年代末,在40余年的时间里,继电保护完成了发展的4个阶段,即从电磁式保护装置到晶体管式继电保护装置、到集成电路继电保护装置、再到微机继电保护装置。
      随着电子技术、计算机技术、通信技术的飞速发展,人工智能技术如人工神经网络、遗传算法、进化
规模、模糊逻辑等相继在继电保护领域的研究应用,继电保护技术向计算机化、网络化、一体化、智能化方向发展。
     19世纪的最后25年里,作为最早的继电保护装置熔断器已开始应用。电力系统的发展,电网结构日趋复
杂,短路容量不断增大,到20世纪初期产生了作用于断路器的电磁型继电保护装置。虽然在1928年电子器件已开始被应用于保护装置,但电子型静态继电器的大量推广和生产,只是在50年代晶体管和其他固态元器件迅速发展之后才得以实现。静态继电器有较高的灵敏度和动作速度、维护简单、寿命长、体积小、消耗功率小等优点,但较易受环境温度和外界干扰的影响。1965年出现了应用计算机的数字式继电保护。大规模集成电路技术的飞速发展,微处理机和微型计算机的普遍应用,极大地推动了数字式继电保护技术的开发,目前微机数字保护正处于日新月异的研究试验阶段,并已有少量装置正式运行。
五、研究现状
      随着电力系统容量日益增大,范围越来越广,仅设置系统各元件的继电保护装置,远不能防止发生全电
力系统长期大面积停电的严重事故。为此必须从电力系统全局出发,研究故障元件被相应继电保护装置的动作切除后,系统将呈现何种工况,系统失去稳定时将出现何种特征,如何尽快恢复其正常运行等。系统保护的任务就是当大电力系统正常运行被破坏时,尽可能将其影响范围限制到最小,负荷停电时间减到最短。此外,机、炉、电任一部分的故障均影响电能的安全生产,特别是大机组和大电力系统的相互影响和协调正成为电能安全生产的重大课题。因此,系统的继电保护和安全自动装置的配置方案应考虑机、炉等设备的承变能力,机、炉设备的设计制造也应充分考虑电力系统安全经济运行的实际需要。为了巨型发电机组的安全,不仅应有完善的继电保护,还应研究、推广故障预测技术。
六、发展趋势
      微机保护经过近20年的应用、研究和发展,已经在电力系统中取得了巨大的成功,并积累了丰富的运
行经验,产生了显著的经济效益,大大提高了电力系统运行管理水平。近年来,随着计算机技术的飞速发展以及计算机在电力系统继电保护领域中的普遍应用,新的控制原理和方法被不断应用于计算机继电保护中,以期取得更好的效果,从而使微机继电保护的研究向更高的层次发展,继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化发展。
1计算机化
      随着计算机硬件的迅猛发展,微机保护硬件也在不断发展。电力系统对微机保护的要求不断提高,除了
保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护、控制装置和调度联网以共享全系统数据、信息和网络资源的能力,高级语言编程等。这就要求微机保护装置具有相当于一台pc机的功能。继电保护装置的微机化、计算机化是不可逆转的发展趋势。但对如何更好地满足电力系统要求,如何进一步提高继电保护的可靠性,如何取得更大的经济效益和社会效益,尚需进行具体深入的研究。
2网络化
      计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,它深刻影响着各个工业领域,也为各
个工业领域提供了强有力的通信手段。到目前为止,除了差动保护和纵联保护外,所有继电保护装置都只能反应保护安装处的电气量。继电保护的作用主要是切除故障元件,缩小事故影响范围。因继电保护的作用不只限于切除故障元件和限制事故影响范围,还要保证全系统的安全稳定运行。这就要求每个保护单元都能共享全系统的运行和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,确保系统的安全稳定运行。显然,实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络联接起来,亦即实现微机保护装置的网络化。
3智能化
      随着智能电网的发展,分布式发电、交互式供电模式对继电保护提出了更高要求,另一方面通信和信
息技术的长足发展,数字化技术及应用在各行各业的日益普及也为探索新的保护原理提供了条件,智能电网中可利用传感器对发电、输电、配电、供电等关键设备的运行状况进行实时监控,然后把获得的数据通过网络系统进行收集、整合,最后对数据进行分析。利用这些信息可对运行状况进行监测,实现对保护功能和保护定值的远程动态监控和修正。另外,对保护装置而言,保护功能除了需要本保护对象的运行信息外,还需要相关联的其它设备的运行信息。一方面保证故障的准确实时识别,另一方面保证在没有或少量人工干预下,能够快速隔离故障、自我恢复,避免大面积停电的发生。保护、控制、测量、数据通信一体化在实现继电保护的计算机化和网络化的条件下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可从网上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。因此,每个微机保护装置不但可完成继电保护功能,而且在无故障正常运行隋况下还可完成测量、控制、数据通信功能,亦即实现保护、控制、测量、数据通信-体化。
七、常用保护
      传统保护
1、电流保护。多用于配电网中,分为:电流速断保护、限时电流速断保护和定时限过电流保护。
2、距离保护。
3、差动保护。
      新兴保护
基于暂态的保护,如行波保护等。
八、继电器厂家
      国外知名品牌有 ABB、GE、SWEL、SEL、西门子、欧姆龙、阿海珐、施耐德、菲尼克斯、魏德米勒等,国
内知名品牌有南瑞、南自、四方、许继等。
九、保护设备
      继电保护设备是指对一次设备的工作进行监测、控制、调节、保护以及为运行、维护人员提供运行工况
或生产指挥信号所需的低压电气设备。如熔断器、控制开关、继电器、控制电缆、仪表、信号设备、自动装置等。
      继电保护设备主要包括:
(1) 仪表
(2) 控制和信号元件
(3) 继电保护装置
(4) 操作、信号电源回路
(5) 控制电缆及连接导线
(6) 发出音响的信号元件
(7) 接线端子排及熔断器等
十、基本任务
     电力系统继电保护的基本任务是:
(1) 自动、迅速、有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其他无故
障部分迅速恢复正常运行。
(2) 反应电气元件的不正常运行状态,并根据运行维护的条件(如有无经常值班人员)而动作于信号,以便值
班员及时处理,或由装置自动进行调整,或将那些继续运行就会引起损坏或发展成为事故的电气设备予以切除。此时一般不要求保护迅速动作,而是根据对电力系统及其元件的危害程度规定一定的延时,以免暂短地运行波动造成不必要的动作和干扰而引起的误动。
(3) 继电保护装置还可以与电力系统中的其他自动化装置配合,在条件允许时,采取预定措施,缩短事故停
电时间,尽快恢复供电,从而提高电力系统运行的可靠性。

上一篇:抗干扰和雷电防护  
下一篇:红外光谱、原子吸收、ICP分析仪

网站律师 法律声明 项目合作 联系我们